
	

Lawrence Livermore National
Laboratory is operated by Lawrence
Livermore National Security, LLC,
for the U.S. Department of Energy,
National Nuclear Security
Administration under Contract
DE-AC52-07NA27344.

L
L
N
L
-
X
X
X
X
-
X
X
X
X
X

OpenMP	4.5	IBM	November	
2015	Hackathon:		Current	
Status	and	Lessons	Learned	
Erik	W.	Draeger,	Ian	Karlin,	Tom	Scogland,	
David	Richards,	Jim	Glosli,	Holger	Jones,	
David	Poliakoff,	Adam	Kunen	

Lawrence	Livermore	National	Laboratory	
	
	

January	11,	2016		

LLNL-TR-680824	

	

Disclaimer	
This	document	was	prepared	as	an	account	of	work	sponsored	by	an	agency	of	the	
United	States	government.	Neither	the	United	States	government	nor	Lawrence	
Livermore	National	Security,	LLC,	nor	any	of	their	employees	makes	any	warranty,	
expressed	or	implied,	or	assumes	any	legal	liability	or	responsibility	for	the	
accuracy,	completeness,	or	usefulness	of	any	information,	apparatus,	product,	or	
process	disclosed,	or	represents	that	its	use	would	not	infringe	privately	owned	
rights.	Reference	herein	to	any	specific	commercial	product,	process,	or	service	by	
trade	name,	trademark,	manufacturer,	or	otherwise	does	not	necessarily	constitute	
or	imply	its	endorsement,	recommendation,	or	favoring	by	the	United	States	
government	or	Lawrence	Livermore	National	Security,	LLC.	The	views	and	opinions	
of	authors	expressed	herein	do	not	necessarily	state	or	reflect	those	of	the	United	
States	government	or	Lawrence	Livermore	National	Security,	LLC,	and	shall	not	be	
used	for	advertising	or	product	endorsement	purposes.	
	

This	work	was	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	
Lawrence	Livermore	National	Laboratory	under	Contract	DE-AC52-07NA27344.	

	
	 	

	

Executive	Summary	
	
On	November	3-5,	2015,	IBM	hosted	a	three-day	hackathon	at	their	Yorktown	
Heights	facility,	to	pair	code	developers	from	multiple	DOE	labs	with	IBM	
applications	and	compiler	experts.			
	
The	OpenMP	4.5	hackathon	was	an	extremely	successful	event.		It	provided	an	
immersive	environment	for	LLNL	and	other	laboratory	software	developers	to	gain	
knowledge	of	how	to	begin	reasoning	about	porting	their	code	to	OpenMP	4.5.		The	
agenda	provided	a	good	mix	of	overview	material	and	coding	time	but	also	allowed	
enough	time	and	flexibility	for	side	discussions.		The	level	of	commitment	from	IBM	
was	high,	with	at	least	one	IBM	employee	per	two	laboratory	visitors	available	for	
pair	programming,	question	answering	and	real	time	compiler	bug	fixing.		IBM	was	
extremely	responsive	to	bugs,	and	fixes	were	usually	available	in	less	than	an	hour,	
thus	keeping	productivity	high.	The	hackathon	was	a	high	value	engagement	well	
worth	traveling	to	for	all	participants	and	we	compliment	the	IBM	team	on	their	
preparation.		The	quality	of	this	event	should	be	considered	a	gold	standard	for	
organization,	preparation	and	involvement	by	the	hosting	organization.		
	
The	authors	of	this	report	studied	three	different	codes:		LULESH,	Kripke,	and	
Cardioid.		All	teams	gained	valuable	experience	with	the	new	standard	and	were	
able	to	make	progress	on	porting	their	codes	to	OpenMP	4.5.		However	we	also	
uncovered	several	issues	that	are	likely	to	create	significant	barriers	to	porting	large	
and	complex	codes,	especially	C++	codes,	to	Sierra	using	OpenMP	4.5.		These	issues	
include:	
	

1. OpenMP	4.5	is	highly	biased	toward	a	loop-offload	accelerator	execution	
model.		It	is	difficult	to	move	code	to	the	GPU	at	granularities	larger	than	a	
loop	or	small	function.	

2. OpenMP	4.5	does	not	guarantee	support	for	common	C++	features	including	
the	STL,	exceptions,	and	virtual	functions	in	target	code.		The	specification	
implies	that	they	should	be	available,	but	many	meaningful	backends	
including	GPUs	do	not.		It	is	not	trivial	to	remove	these	features	from	all	code	
we	wish	to	run	on	the	GPU.	

3. It	is	not	clear	how	to	write	OpenMP	4.5	code	with	target	directives	such	that	
it	will	perform	well	on	both	GPU-based	and	Intel	Phi-based	architectures.			

	
It	seems	likely	that	we	will	need	to	devise	new	programming	patterns	and	refactor	
code	to	adopt	these	patterns	to	take	full	advantage	of	OpenMP	4.5.	
	
Bugs	are	expected	in	early	access	compilers,	and	our	codes	quickly	exposed	
problems.		We	believe	that	most	or	all	of	the	correctness	issues	that	we	found	can	be	
quickly	and	easily	addressed.		Poor	performance	of	generated	code	is	a	more	

	

complex	issue	and	future	work	with	IBM	and	NVIDIA	will	likely	be	necessary	to	
identify	appropriate	guidance	for	application	developers	and	to	implement	
necessary	compiler	features	to	create	code	that	performs	well.	
	
Finally,	we	have	identified	a	number	of	limitations	or	deficiencies	of	the	OpenMP	
standard.	These	include:	
	

1. Mapping	complex	data	structures	to	the	GPU	is	tedious	and	produces	very	
ugly	code.		Serialization	and	deep	copy	operations	are	badly	needed.	

2. The	declare target	directive,	required	to	create	device	versions	of	
functions	and	methods,	is	under-specified	for	use	in	and	around	C++	classes.	

3. The	new	defaultmap	clause	in	OpenMP	4.5	is	well	needed,	but	lacks	
options	to	change	the	behavior	for	aggregates	or	scalars;	specifically	the	
ability	to	make	aggregates	default	firstprivate	is	an	issue.	

4. Mapping	of	class	members	and	especially	the	this	pointer	is	under-
specified,	and	will	be	important	for	C++	applications.	

5. Mapping	of	virtual	classes,	even	when	the	class	in	question	has	a	concrete	
type	as	in	a	non-virtual	method	of	same,	is	not	allowed.	

6. There	is	currently	no	way	to	request	a	pointer	to	a	device	function	on	a	given	
target	device,	some	application	codes	will	require	this	support	in	both	C	and	
C++.	

	
Hopefully	future	versions	of	the	OpenMP	standard	will	be	able	to	address	these	
limitations.	
	
OpenMP	4.5	is	a	significant	improvement	compared	to	OpenMP	4.0.		Despite	these	
improvements,	implementing	large	complex	codes	using	OpenMP	4.5	remains	a	
significant	challenge.		However,	we	believe	OpenMP	will	continue	to	evolve	in	ways	
that	will	make	code	implementation	and	device	usage	easier	in	the	future.		Also,	
despite	the	limitations	in	OpenMP	4.5,	as	of	today	it	provides	the	best	opportunity	
for	us	to	generate	performance	portable	codes	for	our	diverse	C,	C++,	and	Fortran	
code	base.		While	it	will	be	more	challenging	than	any	of	us	may	like	to	use	OpenMP	
4.5	effectively,	we	believe	that	the	close	collaboration	with	IBM	and	our	early	start	
have	us	heading	in	the	right	direction.	
	 	

	

	
	

1 Review	of	OpenMP	4.x	Features	
	
OpenMP	4.0	was	released	in	July	2013.		One	of	the	most	important	feature	additions	
was	the	support	for	accelerators	such	as	GPUs.	
	
OpenMP	4.5	was	released	in	November	2015	and	contains	significant	feature	
improvements	based	on	lessons	learned	from	the	4.0	release.		These	features	
include:	
	
• Significantly	improved	support	for	devices.	OpenMP	now	provides	

mechanisms	for	unstructured	data	mapping,	asynchronous	execution	and	
also	runtime	routines	for	device	memory	management.	These	routines	allow	
for	explicit	allocation,	copying	and	freeing	of	memory	between	devices.	

• Support	for	doacross	loops.	A	natural	mechanism	to	parallelize	loops	with	well-
structured	dependences	is	provided.	

• New	taskloop	construct.	Support	to	divide	loops	into	tasks,	avoiding	the	
requirement	that	all	threads	execute	the	loop.	

• Reductions	for	C/C++	arrays.	This	often	requested	feature	is	now	available	by	
building	on	support	for	array	sections.	

• Task	and	lock	hint	mechanisms.	Hint	mechanisms	can	provide	guidance	on	the	
relative	priority	of	tasks	and	on	preferred	synchronization	implementations.	

• Thread	affinity	support.	It	is	now	possible	to	use	runtime	functions	to	determine	
the	effect	of	thread	affinity	clauses.	

• Improved	support	for	Fortran	2003.	Users	can	now	parallelize	many	Fortran	
2003	programs.	

• SIMD	extensions.	These	extensions	include	the	ability	to	specify	exact	SIMD	
width	and	additional	data-sharing	attributes.	

	
It	is	clear	from	our	experiences	at	the	hackathon	that	OpenMP	4.5	features	are	going	
to	be	critical	to	application	performance	and	portability	of	code.		However,	given	
that	the	4.5	standard	is	new,	and	we	have	already	found	some	significant	
shortcomings	that	we	discuss	below,	we	believe	OpenMP	4.5	should	be	thought	of	a	
significant	waypoint	in	an	evolving	and	improving	ecosystem.	
	 	

	

	

2 Key	Findings	for	Application	Developers	
	
Porting	large	applications	to	Sierra	using	OpenMP	4.5	will	be	a	major	challenge.		Our	
experience	during	the	hackathon	uncovered	some	of	the	most	significant	challenges	
application	developers	will	need	to	confront.	
	
While	new	features	of	OpenMP	4.5	and	beyond	make	it	easier	to	access	GPU	
accelerators	and	manage	data	movement	than	earlier	versions	of	the	standard,	the	
OpenMP	programming	model	still	has	limitations	and	may	require	significant	code	
restructuring	to	ensure	portability.		The	two	main	lessons	we	took	away	from	this	
hackathon	were	(1)	to	maximize	memory	coalescence	and	avoid	divergence	on	the	
GPU	as	much	as	possible,	and	(2)	to	write	“static”	code	as	much	as	possible	to	use	on	
the	device,	e.g.,	C-style	kernels	or	encapsulated	C++	static	templates	and	objects	that	
eschew	polymorphism,	external	libraries,	etc.		Simply	decorating	an	existing	code	
without	considering	how	to	limit	the	scope	of	pragma	markup	and	the	subsequent	
requirements	on	libraries	and	functions	used	within	is	not	recommended.	

2.1 OpenMP	4.5	is	biased	toward	a	loop/kernel	offload	execution	model	
	
OpenMP	4.5	is	a	major	improvement	compared	to	OpenMP	4.0.		In	particular	the	
unstructured	data	mapping	pragmas	(#pragma omp target data enter	and	
#pragma omp target data exit)	provide	a	needed	mechanism	to	map	data	
to	and	from	the	GPU	without	being	limited	to	a	single	program	scope.		However,	
OpenMP	4.5	is	highly	biased	toward	an	execution	model	where	loops	or	kernels	are	
offloaded	to	the	accelerator	one	at	a	time	with	all	flow	control	handled	by	the	host	
processor.		Applications	will	likely	discover	that	the	most	practical	approach	to	
using	the	accelerator	is	to	identify	highly	self-contained	loops	or	kernels	and	
decorate	these	code	segments	to	execute	on	the	device.		Sending	large	blocks	of	code	
to	the	accelerator	all	at	once,	or	attempting	to	run	code	natively	on	the	accelerator	
with	the	CPU	serving	as	a	“serial	accelerator”	is	either	impossible	or	impractical.			
	
Specific	examples	of	problems	developers	are	likely	to	encounter	are	given	in	the	
appendix	of	this	document.		See	for	example:	

• Appendix	A.1:		All	functions	and	methods	called	from	target	code	must	be	
device	code	and	in	the	case	of	Nvidia	GPUs	either	written	in	CUDA	or	
decorated	with	#pragma omp declare target.		This	can	quickly	
cascade	and	require	pragma	decorations	across	large	parts	of	the	code	base.	

• Appendix	A.2:		Code	within	#pragma omp declare target regions	can	
not	call	library	functions	that	do	not	have	a	GPU-compatible	version	
available.	

	
	

	

2.2 Code	intended	for	the	GPU	cannot	use	important	C++	features	such	as	
polymorphism	or	the	STL	

	
Although	OpenMP	is	agnostic	about	most	language	features	in	Fortran	and	C/C++,	
GPUs	are	not	capable	of	supporting	some	programming	constructs.			Many	
commonly	used	C++	features,	such	as	templates,	that	are	inlined	at	compile	time	are	
OK	to	use	in	GPU	code.		However,	dynamic	code	that	requires	accessing	a	virtual	
function	table	are	either	not	allowed	or	not	enabled	by	the	model.	
	
For	a	developer	this	means	that	virtual	member	functions	cannot	be	defined	within	
a	#pragma omp declare target	region,	limiting	the	use	of	polymorphism.		
Although	this	behavior	is	not	expressly	forbidden	by	the	OpenMP	standard,	it	is	also	
not	required,	making	it	unclear	if	such	polymorphism	will	be	consistently	
supported.		In	addition,	GPUs	do	not	currently	have	the	hardware	support	needed	
for	polymorphism.		Finally,	the	standard	does	ensure	that	any	object	with	virtual	
member	functions	can	be	mapped	to	the	device	limiting	how	a	developer	can	define	
certain	classes.		Note	this	last	restriction	is	in	place	regardless	of	if	only	concrete	
objects	are	called	from	the	device.	
	
Using	the	standard	template	library	(STL)	on	a	GPU	is	currently	not	possible.		Many	
STL	functions	(e.g.,	push_back)	are	inherently	serial,	as	are	most	iterator	types.	
While	it	is	possible	to	in	principle	to	parallelize	algorithms	with	random	access	
iterators,	any	attempt	will	quickly	encounter	the	issue	of	calling	library	code	in	
terms	of	the	decoration	requirements	described	in	the	previous	subsection.	

2.3 Performance	portability	is	a	major	concern	
	
Although	OpenMP	4.5	offers	a	welcome	portable	approach	to	GPU	programming,	
there	is	still	reason	to	be	concerned	with	performance	portability.			How	will	device	
code	be	interpreted	on	non-GPU	architectures	such	as	Xeon	Phi?		Will	we	be	
required	to	maintain	separate	device	and	non-device	versions	of	large	amounts	of	
code?		Even	if	there	is	a	sensible	interpretation	of	device	code	on	Xeon	Phi,	the	
inherent	architecture	differences	will	dictate	different	loop	schedules	to	maximize	
the	efficient	use	of	resources.		For	example	GPUs	need	a	(static,	1)	loop	schedule	to	
coalesce	memory	access,	but	this	schedule	is	terrible	for	a	SIMD	unit	on	Xeon	Phi.		
We	have	only	started	to	consider	the	possible	challenges	for	cross	platform	
programming	in	OpenMP	4.5.		
	
Furthermore,	discussions	with	the	IBM	compiler	developers	revealed	the	degree	to	
which	runtime	behavior	is	implementation	development.		It	is	possible	for	vendors	
to	interpret	the	OpenMP	standard	sufficiently	differently	so	as	to	make	it	difficult	or	
impossible	for	code	to	be	performance	portable.		Detailed	examples	of	where	the	
standard	is	vague	enough	to	warrant	concern	are	outlined	in:	
	

• Appendix	A.3	Implementation	Dependent	Runtime	Behavior	

	

	
We	note	the	IBM	compiler	team	is	aware	of	these	issues	and	does	have	a	good	
working	relationship	with	the	Intel	compiler	team	so	there	is	hope	for	good	
solutions.		Continuing	this	early	engagement	with	Intel	is	recommended	to	ensure	
that	we	avoid	creating	“solutions”	that	turn	out	to	be	future	problems.	

2.4 Mapping	data	can	be	tedious.		No	deep	copy.	
	
Facilities	to	map	data	to	the	device	are	still	relatively	limited.		Typically	each	
member	of	a	complex	data	structure	must	be	mapped	individually.		There	is	no	
awareness	of	C++	constructors	or	destructors	and	currently	no	support	for	
serialize/deserialize	methods	that	could	make	data	mapping	less	tedious	and/or	
error	prone.		Deep	copy,	i.e.,	the	ability	to	follow	pointers	when	mapping	data	from	
host	to	device,	is	not	facilitated	by	OpenMP	4.5.		As	such,	using	data	structures	of	
pointers	to	pointers	is	a	significant	programming	burden.		It	is	hoped	that	this	
functionality	will	exist	in	OpenMP	5.0.	

2.5 New	programming	patterns	are	necessary	
	
The	above	programming	challenges	and	concerns	will	require	application	
developers	to	redesign	many	portions	of	their	application.		The	issues,	workarounds	
and	challenges	mentioned	earlier	in	this	section	should	provide	a	start	towards	best	
practices	for	moving	codes	to	OpenMP	4.5	and/or	GPU	accelerated	architectures.		
However,	the	issues	identified	above	are	an	OpenMP	and	GPU	centric	view.		
Developers	investing	significant	effort	into	refactoring	their	code	to	OpenMP	4.5	
with	an	eye	towards	performance	portability	will	need	to	understand	how	these	
challenges	intersect	with	the	constraints	imposed	by	the	current	machines	their	
codes	run	on	and	other	platforms	that	are	likely	to	be	deployed	in	the	foreseeable	
future.	

3 Key	Findings	for	the	CORAL	Compiler	Team	
	
Overall	the	hackathon	participants	were	impressed	by	the	quality	of	the	compiler	
team	and	progress	achieved	to	date.		Members	of	the	team	were	helpful,	
knowledgeable	and	able	to	resolve	many	issues	as	they	arose	during	the	hackathon.		
In	this	section,	we	present	a	high-level	overview	of	the	unresolved	compiler	issues	
we	encountered	and	in	the	appendix	we	document	some	of	these	issues	in	more	
detail.		It	is	important	to	note	that	fixing	many	of	these	issues	is	already	plan	of	
record	for	IBM.	

3.1 Thread	scheduling	is	not	performance	portable	
		
The	current	compiler	requires	marking	loops	with	schedule(static,1)	in	
order	to	get	coalesced	memory	access	on	the	GPU.		However,	this	schedule	results	in	

	

poor	performance	on	the	CPU.	To	avoid	the	need	for	separate	pragmas	for	the	GPU	
and	CPU	cases	(or	code	that	is	only	performant	on	one	of	the	two	architectures)		
GPU	pragmas	should	be	treated	as	schedule(static,1)by	default	for	code	
writing	ease,	performance	portability	and	clarity.			

3.2 Splitting	pragmas	across	lines	hurts	performance	but	line	splits	are	
required	since	the	if	clause	can’t	target	specific	keywords	

	
Although	the	OpenMP	standard	allows	one	to	break	up	directives	into	multiple	
pragma	lines,	doing	so	with	the	current	compiler	implementation	can	significantly	
impact	performance.		In	addition,	since	the	if	clause	in	the	current	implementation	
can	not	target	single	clauses	in	a	pragma	(this	is	an	OpenMP	4.5	feature)	to	generate	
CPU	and	GPU	code	from	the	current	compiler	requires	splitting	pragmas	resulting	in	
sub-optimal	performance.		We	note	that	while	we	did	not	encounter	any	code	at	the	
hackathon	that	needed	if	statements	to	be	split	across	lines,	performance	portability	
might	require	this	in	some	cases.	

3.3 Issues	with	mapping	data	

Private	class	member	variables	cannot	be	mapped	directly	to	a	device.		As	a	
workaround,	one	must	create	a	local	reference	to	them	or	a	private	copy.			Currently,	
the	compiler	only	supports	the	OpenMP	4.0	mapping	behavior	where	all	variables	
used	in	a	target	construct	are	implicitly	mapped	tofrom.		A	switch	to	the	4.5	
standard	will	reduce	both	data	traffic	and	should	correct	some	of	the	bugs	in	the	
current	compiler	related	to	mapping	(See	Appendices	B.1	and	B.2)	

3.4 Register	usage	higher	than	comparable	CUDA	code	
	
In	tests	using	LULESH,	register	usage	was	2-3x	greater	than	comparable	CUDA	
implementations,	causing	register	spills	and	decreased	occupancy.		Performance	of	
one	tested	kernel	showed	it	was	approximately	2x	slower	than	CUDA.		Some	of	these	
differences	are	due	to	how	mapped	data	is	handled	in	the	current	implementation;	
however,	most	of	the	register	usage	differences	are	not	explained	at	this	time.	(See	
Appendix	B.3)	

3.5 Lambda	issues	
	
Currently	there	is	no	compiler	support	for	nested	lamdas	needed	for	some	of	our	
applications,	such	as	Kripke.		In	addition,	lambda	capture	is	capturing	items	from	
the	outer	scope,	resulting	in	the	device	getting	host	pointers.	
	
	
	

	

4 Key	Findings	regarding	the	OpenMP	4.5	Standard	
	
These	are	issues	we	identified	where	the	OpenMP	standard	doesn’t	specify	a	
solution	or	indicate	whether	one	is	even	possible.		Note	that	these	are	simply	issues	
that	were	encountered	during	the	course	of	the	hackathon,	and	do	not	represent	a	
comprehensive	listing	for	the	spec	as	a	whole.	

4.1 Support	for	complex	data-structures	is	lacking	
	
OpenMP	currently	offers	no	facilities	for	handling	nested	data	structures,	those	that	
contain	pointers	to	sub-objects	for	example.		It	is	tedious,	ugly,	and	difficult	to	map	
such	complex	data-structures,	and	they	are	ubiquitous	in	meaningful	application	
codes.		Solutions	like	deep-copy	and	user-definable	mapping	or	
serialization/deserialization	mechanisms	could	go	a	long	way	to	alleviate	this,	but	
none	are	currently	available.	

4.2 The	defaultmap	clause	is	incomplete	
	
While	the	concept	of	defaultmap,	being	able	to	change	the	default	behavior	for	a	
given	variable	type	on	a	scope,	is	quite	useful	we	found	that	its	current	definition	is	
insufficient	for	several	important	use-cases.		As	it	is	now,	it	can	only	be	used	to	
change	the	behavior	for	scalars	to	be	map(tofrom:).			This	is	useful	in	that	it	
returns	the	OpenMP	4.0	behavior,	but	it	lacks	the	ability	to	change	the	behavior	of	
aggregates	and	pointers	and	even	the	ability	to	express	the	actual	default.		OpenMP	
should	offer	more	configurability	with	this	construct.	

4.3 OpenMP	interoperability	with	other	threading	models	is	undefined	
	
Some	LLNL	codes	(e.g.	Hydra)	combine	specialized	pthreads,	C11	threads	or	other	
such	models,	sometimes	hidden	in	libraries,	with	OpenMP.		The	OpenMP	standard	
doesn’t	specify	how	these	should	interact,	nor	does	it	specify	how	two	
implementations	of	OpenMP	may	interact	when	linked	into	the	same	program.		This	
is	usually	a	performance	issue,	but	in	some	cases	can	cause	complete	failure	as	well.	

4.4 Pointers	to	device	functions	
	
The	OpenMP	standard	doesn’t	offer	a	mechanism	to	retrieve	a	pointer	to	a	target	
function,	or	to	ensure	that	such	a	pointer	exists	inside	a	target	region.		Since	any	
pointer	to	such	a	construct	must	come	from	OpenMP,	this	makes	any	code	using	
function	pointers	inside	target	regions	non-portable	for	the	time	being.		This	is	likely	
to	be	important	across	all	OpenMP	supported	languages,	including	C,	C++	and	
Fortran	versions	since	Fortran	90.	

	

4.5 C++	support	

C++	is	currently	supported	as	C	is	supported,	which	is	to	say	that	it	can	be	used	but	
not	all	extensions	above	C	are	guaranteed	or	facilitated.		Specifically,	three	issues	
stand	out:	
	

• Interactions	between	the	declare target	directive	and	top-level	scoped	
constructs	such	as	classes	and	namespaces	have	not	been	defined.		While	the	
committee	seems	to	agree	this	is	an	issue	to	address	soon,	there	is	currently	
no	specification	for	how	these	interact.	

• Mapping	of	member	variables	inside	methods	is	not	well	defined,	they	may	
either	be	references	to	a	mapped	this	pointer	or	handled	by	their	individual	
default	attributes.		This	ambiguity	could	be	quite	harmful	to	portability	if	
unresolved.	

• Any	class	containing	a	virtual	method	cannot	be	mapped,	have	its	data	
brought	into	the	device	data	environment,	even	when	the	class	is	concrete	
and	that	method	is	never	invoked	on	the	device.		While	full	support	for	
virtual	functions	is	a	significant	issue	on	target	platforms,	the	inability	to	
even	use	the	data	storage	of	the	class	is	problematic	for	some	codes.	

	

5 Final	Impressions	and	Future	Thoughts	
	
The	OpenMP	4.5	hackathon	was	an	extremely	valuable	use	of	time	for	the	LLNL	
application	developers	that	attended.		Lessons	learned	about	how	to	write	OpenMP	
4.5	code	are	already	propagating	back	to	the	wider	application	development	
community	at	LLNL.		In	addition,	we	learned	that	while	OpenMP	4.5	and	beyond	
make	it	easier	to	access	GPU	accelerators	and	manage	data	movement	there	are	still	
areas	we	need	to	work	with	the	standards	committee	to	enable	needed	productivity	
and	performance	features.		While	the	compiler	had	to	be	expected	problems,	we	
were	impressed	with	how	the	team	took	our	constructive	criticism	and	is	already	
addressing	issues	uncovered.		We	would	like	to	thank	the	IBM	team	one	final	time	
for	organizing	the	event.		We	realize	that	significant	effort	was	required	beyond	the	
three	days	we	worked	together	side	by	side	to	make	it	the	success	it	was.		We	hope	
to	have	future	engagements	like	the	hackathon	as	appropriate.	 	

	

Appendix	A	 OpenMP	Issues	
	
	The	teams	discovered	multiple	issues	with	the	OpenMP	4.5	standard	that	may	
significantly	limit	the	design,	functionality	and	performance	portability	of	large	
object-oriented	codes.	

A.1	 All	functions	and	methods	called	from	target	code	must	be	enclosed	
within	#pragma	omp	declare	target	regions	

	
If	the	loop	you	want	to	execute	uses	C++	objects	or	functions,	all	code	used	or	
included	by	these	objects	or	functions	must	be	within	#pragma omp declare
target	regions.			
	

	

ReactionFHN rfhn;
#pragma omp target map(to:rfhn)
{
 rfhn.calc();
}

Figure	1:		Pseudo-code	demonstrating	how	the	OpenMP	requirement	that	#pragma	omp	declare	
target	regions	(red)	follow	all	object	dependencies	can	lead	to	markup	throughout	the	code	base.	

CellModel.hh	

#ifndef CELL_MODEL_HH
#define CELL_MODEL_HH
#pragma omp declare target

class Cell;
class CellModel(void);

#pragma omp end declare target
#endif

Vector32.hh	

#ifndef VECTOR32_HH
#define VECTOR32_HH
#pragma omp declare target
#include “AlignedAllocator.hh”

typedef std::vector<double, AlignedAllocator<double> > Vector32;

#pragma omp end declare target
#endif

Anatomy.hh	

#ifndef ANATOMY_HH
#define ANATOMY_HH
#pragma omp declare target
#include “CellModel.hh”
#include “Vector32.hh”

#pragma omp end declare target
#endif

ReactionFHN.hh	

#ifndef REACTION_FHN_HH
#define REACTION_FHN_HH
#pragma omp declare target

class Anatomy;
class ReactionFHN : public Reaction
{
}
#pragma omp end declare target
#endif

ReactionFHN.cpp	

#include “ReactionFHN.hh”
#include “Anatomy.hh”

#pragma omp declare target
ReactionFHN::ReactionFHN(const Anatomy&
anatomy)
{
}

#pragma omp end declare target

	

For	codes	with	many	interdependent	objects,	this	can	quickly	lead	to	large	fractions	
of	the	total	code	base	needing	this	additional	decoration.		Beyond	simply	being	
aesthetically	displeasing	to	add	extensive	markup	throughout	the	code	base,	this	
limits	the	capabilities	of	these	objects	in	multiple	ways	(see	sections	1.2	and	1.3).	

A.2	 All	functions	within	#pragma	omp	declare	target	regions	must	have	GPU	
compatible	versions	available	

	
Many	codes	rely	on	third	party	libraries	(e.g.	Hypre,	ScaLAPACK,	HDF)	to	provide	
portable	functionality	and	access	to	the	latest	state	of	the	art	algorithms.	Objects	
used	within	OpenMP	target	regions	that	call	functions	or	include	header	files	from	
these	libraries	create	an	additional	portability	requirement	for	the	libraries.	
Moreover,	many	common	functions	such	as	exit(),	MPI_Abort(),	or	anything	in	
the	C++	Standard	Template	Library	(STL)	do	not	currently	have	GPU-compatible	
versions.		In	some	cases,	GPU-compatible	functions	may	not	be	possible,	requiring	
the	complete	removal	of	these	calls	from	any	code	within	the	scope	of	a	#pragma
omp declare target	region.	
	
	

	

Figure	2:		This	won’t	compile,	due	to	the	use	of	an	incompatible	function	(blue)	within	the	
dependency	tree	of	the	code	to	be	executed	on	the	GPU.	

Vector32.hh	

#ifndef VECTOR32_HH
#define VECTOR32_HH
#pragma omp declare target
#include “AlignedAllocator.hh”

typedef std::vector<double, AlignedAllocator<double> > Vector32;

#pragma omp end declare target
#endif

Anatomy.hh	

#ifndef ANATOMY_HH
#define ANATOMY_HH
#pragma omp declare target
#include “CellModel.hh”
#include “Vector32.hh”

#pragma omp end declare target
#endif

ReactionFHN.hh	

#ifndef REACTION_FHN_HH
#define REACTION_FHN_HH
#pragma omp declare target

class Anatomy;
class ReactionFHN : public Reaction
{
}
#pragma omp end declare target
#endif

#include “ReactionFHN.hh”
#include “Anatomy.hh”
ReactionFHN.cpp	
#pragma omp declare target

ReactionFHN::ReactionFHN(const Anatomy&
anatomy)
{
}

#pragma omp end declare target

CellModel.hh	

#ifndef CELL_MODEL_HH
#define CELL_MODEL_HH
#pragma omp declare target

class Cell;
class CellModel(void)
{
 public:
 void setCell(int i, Cell& cell)
 {
 if (i < 0 || i >= cellList_.size())
 MPI_Abort(MPI_COMM_WORLD,-3);
 cellList_[i] = cell;
 }
 private:
 std::vector<Cell> cellList_;
};
#pragma omp end declare target
#endif

	

A.3	 Implementation	dependent	runtime	behavior	
	
In	order	to	allow	flexibility	and	support	many	devices	the	OpenMP	committee	left	
the	behavior	of	many	key	attributes	loosely	defined.		While	necessary	to	allow	
OpenMP	to	support	a	plethora	of	devices	for	HPC	use	cases	this	is	sometimes	
sufficiently	vague	to	cause	concern.		How	various	vendors	interpret	these	vague	
sections	can	result	in	significant	performance,	performance	portability	and	
programming	challenges.		At	the	hackathon	we	identified	the	following	potential	
issues:	
	

1. Interpretation	of	the	teams	construct:	Implementations	are	allowed	to	create	
as	few	as	one	team	for	the	teams	construct,	which	may	leave	more	contention	
in	the	application	than	necessary.		Others	require	multiple	teams	to	perform	
well,	which	may	create	unfortunate	conflicts	of	interest.	

2. The	map clause	only	specifies	that	a	device	will	acquire	a	view	of	the	
mapped	data.		This	allows	the	runtime	to	decide	when	and	if	to	move	data	
between	the	multiple	memory	spaces	on	a	node.		Therefore,	a	program	
written	only	using	map	to	target	devices	will	need	to	rely	on	the	runtime	to	
map	data	in	a	performant	manner.		In	order	to	guarantee	what	a	programmer	
wants	to	happen	occurs	on	all	machines,	new	mechanisms	are	required	to	
ensure	sensible	placement	of	data,	especially	giving	users	some	control	over	
such	placement.	
	

	
	 	

	

Appendix	B	 Implementation	Issues	
		
In	this	section	we	identify	issues	we	faced	with	the	current	implementation	of	
OpenMP	4.5	within	the	version	of	the	Clang	LLVM	compiler	used	at	the	hackathon.		

B.1	 Unable	to	map	private	class	member	variables	to	device	
	
When	mapping	data	to	the	device	from	within	a	member	function,	one	must	create	a	
local	reference	to	or	copy	of	private	member	variables	one	wants	to	map	to	the	
device.		(At	the	start	of	the	hackathon,	references	to	private	member	variables	could	
not	be	mapped.		This	was	identified	as	a	compiler	bug	and	fixed.)	
	

	
	
	
	
	
	
	
	

// This won’t work
void SimulationLoop::moveCells()
{
 #pragma omp target teams distribute parallel for map(to:dt_) \
 map(to:nCells_)
 for (int ii=0; ii<nCells_; ii++)
 {
 integrator.updateCell(ii,dt_);
 }
 return;
}

// This should work
void SimulationLoop::moveCells()
{
 const double& dtR = dt_;
 const int& nCellsR = nCells_;
 #pragma omp target teams distribute parallel for map(to:dtR) \
 map(to:nCellsR)
 for (int ii=0; ii<nCellsR; ii++)
 {
 integrator.updateCell(ii,dtR);
 }
 return;
}

	

B.2	 Implicit	mapping	behavior	
	
In	OpenMP	4.0	anything	used	in	a	target	construct	is	implicitly	mapped	tofrom.		In	
OpenMP	4.5,	scalars	are	firstprivate	by	default,	structures	are	mapped	tofrom	by	
default,	and	pointers	and	arrays	are	handled	as	zero-length	array	sections.		The	
current	compiler	uses	the	4.0	behavior,	which	caused	significant	issues	with	pointer	
passing	resulting	in	multiple	mappings	and	various	failures.	

B.3	 Register	usage	higher	than	comparable	CUDA	code	
	
In	tests	using	LULESH,	register	usage	was	2-3x	greater	than	comparable	CUDA	
implementations,	causing	register	spills	and	decreased	occupancy	which	can	have	a	
significant	impact	on	performance.		At	the	hackathon,	performance	numbers	were	
obtained	for	one	of	the	LULESH	kernels	and	found	to	be	approximately	2x	slower	
than	CUDA.		Part	of	the	register	usage	differences	is	how	pointers	and	device	
mapped	data	is	handled	and	IBM	is	working	on	this	(see	2.5).		However,	it	is	unclear	
where	the	other	register	usage		differences	come	from.		They	could	be	from	the	IBM	
compiler	or	the	Nvidia	PTX	compiler	used	by	IBM	as	a	backend,	and	more	extensive	
performance	testing	is	needed	across	sizes	to	draw	definitive	conclusions.		
	

Kernel/Registers	 64	 128	 255	

1	 28381	 22694	 27143	

4	 31898	 27493	 32349	

6	 40806	 42521	 39330	

7	 67852	 52589	 52910	

14	 16207	 9107	 5435	

15	 3384	 2548	 2676	

16	 5282	 5689	 8854	

Sum	 193810	 162641	 168697	
Table	1:		LULESH	kernel	performance	in	microseconds	for	a	1203	size.	Results	
were	similar	for	other	sizes	(603	and	903)	

	
We	note	that	when	maximum	kernel	register	usage	is	below	64	registers,	OpenMP	
kernel	performance	on	the	GPU	is	within	~10%	of	CUDA	of	equivalent	CUDA	code.		
Testing	showed	that	relaxing	the	use	of	compiler	defaults	on	the	number	of	registers	
to	use	could	be	advantageous.	A	simple	heuristic	of	determine	how	many	registers	a	
kernel	needs	and	round	to	the	nearest	number	available	can	produce	better	
performance	on	a	kernel	by	kernel	basis	at	a	reasonable	compile	time	cost.	

